Voorwaardelijke variantie



Het internet is een onuitputtelijke bron van kennis, ook als het gaat om Voorwaardelijke variantie. Eeuwen en eeuwen van menselijke kennis over Voorwaardelijke variantie zijn in het net gegoten, en worden nog steeds in het net gegoten, en juist daarom is het zo moeilijk om er toegang toe te krijgen, omdat we plaatsen kunnen vinden waar de navigatie moeilijk of zelfs onuitvoerbaar kan zijn. Ons voorstel is dat u geen schipbreuk lijdt in een zee van gegevens betreffende Voorwaardelijke variantie en dat u alle poorten van wijsheid snel en efficiënt zult kunnen bereiken.

Met dat doel voor ogen hebben wij iets gedaan dat verder gaat dan het voor de hand liggende, namelijk het verzamelen van de meest actuele en best uitgelegde informatie over Voorwaardelijke variantie. We hebben het ook zo ingedeeld dat het gemakkelijk te lezen is, met een minimalistisch en aangenaam ontwerp, wat zorgt voor de beste gebruikerservaring en de kortste laadtijd. We maken het u gemakkelijk, zodat u zich alleen maar zorgen hoeft te maken over het leren van alles over Voorwaardelijke variantie! Dus als je denkt dat we ons doel bereikt hebben en je al weet wat je wilde weten over Voorwaardelijke variantie, dan zouden we je graag terugzien in deze kalme zeeën van sapientianl.com wanneer je honger naar kennis weer is aangewakkerd.

In kansrekening en statistiek beschrijft de voorwaardelijke variantie de variantie van een willekeurige variabele , mits er aanvullende informatie beschikbaar is over de uitkomst van het onderliggende toevalsexperiment . Het wordt gedefinieerd als de voorwaardelijke verwachte waarde van de kwadratische afwijking van de willekeurige variabele van zijn voorwaardelijke verwachte waarde. Zoals in dit geval kan de voorwaarde bijvoorbeeld bestaan uit het feit dat bekend is of een bepaalde gebeurtenis heeft plaatsgevonden of welke waarden een andere willekeurige variabele heeft aangenomen; abstract kan de aanvullende informatie worden opgevat als een deelruimte van de onderliggende gebeurtenisruimte .

Een belangrijke toepassing is de decompositie van variantie , een formule waarmee varianties kunnen worden weergegeven door voorwaardelijke varianties en voorwaardelijke verwachtingswaarden en die ook een rol speelt bij regressieanalyse . Tijdreeksmodellen zoals ARCH-modellen of de veralgemening ervan GARCH-modellen gebruiken voorwaardelijke varianties om specifiek stochastische afhankelijkheden in processen te modelleren, zoals ze vooral voorkomen in vraagstukken van financiële wiskunde .

definitie

Laat en zijn twee reële willekeurige variabelen op een kansruimte , dan heet

de voorwaardelijke variantie van gegeven (of variantie van voorwaardelijke op ).

Analoog aan de voorwaardelijke verwachtingswaarde wordt ook gekeken naar de voorwaardelijke varianties

  • een evenement gegeven ,
  • gegeven dat de waarde aanneemt

evenals in het algemeen

  • een partiële -algebra gegeven .

Voor dit doel zijn in de definitie de twee verwachte waarden respectievelijk gesteld , of voorwaardelijk.

In het volgende worden alle formules alleen gegeven voor de voorwaarde op een andere willekeurige variabele; ze zijn dienovereenkomstig van toepassing op de andere gevallen. Merk echter op dat en niet- negatieve reële getallen (of ) zijn, terwijl en willekeurige variabelen zijn. Alle volgende vergelijkingen en ongelijkheden voor de laatste moeten vrijwel zeker worden begrepen als - vanwege de dubbelzinnigheid van voorwaardelijke verwachtingswaarden , zonder dat dit expliciet wordt vermeld.

Definitie in het discrete en continue geval

In het discrete en continue geval worden de voorwaardelijke varianties gedefinieerd door

Indien discreet Als stabiel

Hier staat de voorwaardelijke verwachtingswaarde en de voorwaardelijke dichtheid .

Eenvoudige rekenregels

Van de definitie analoog aan de (onvoorwaardelijke) variantie, samen met de rekenregels voor voorwaardelijke verwachtingswaarden , blijven de rekenregels voor varianties van overeenkomstige toepassing. In het bijzonder heeft men:

  • niet-negativiteit :
  • Affine transformaties :voor iedereen
  • Verplaatsing stelling :

variantie ontleding

Een belangrijke uitspraak in verband met de voorwaardelijke variantie is de variantie-decompositie (ook wel de stelling van de totale variantie genoemd ), volgens welke de (onvoorwaardelijke) variantie van een willekeurige variabele de som is van de verwachte waarde van zijn voorwaardelijke variantie en de variantie van de voorwaardelijke verwachte waarde:

.

Je kunt het als volgt zien: De voorwaardelijke verwachte waarde is een willekeurige variabele met verwachte waarde en variantie

.

De voorwaardelijke variantie heeft de verwachte waarde

.

Het toevoegen van de laatste twee vergelijkingen geeft

.

Voorbeelden

en ,
zo
en .
Met de stelling van de totale verwachte waarde volgt:
en met de variantie decompositie
.
  • Laat de willekeurige variabelen en bivariate normaal verdeeld zijn met verwachte waarden en , varianties en en de correlatiecoëfficiënt . Dan is het voorwaardelijk normaal verdeeld met verwachte waarde en variantie . In dit voorbeeld is in het bijzonder de voorwaardelijke variantie
constant (ongeacht ).

literatuur

Opiniones de nuestros usuarios

Melissa Van Zanten

Het is altijd goed om te leren. Bedankt voor het artikel over Voorwaardelijke variantie.

Joost Bos

Deze post over Voorwaardelijke variantie was precies wat ik wilde vinden.

Joyce Van Der Laan

Dit item over Voorwaardelijke variantie heeft me geholpen om mijn werk voor morgen op het laatste moment af te krijgen. Ik zag mezelf al teruggaan naar Wikipedia, iets wat de leraar ons verbiedt te doen. Bedankt dat je me gered hebt